P3-16 Fate of Listeria monocytogenes in Cocoa Powder during Isothermal Inactivation

Wednesday, July 12, 2017
Exhibit Hall (Tampa Convention Center)
Hsieh-Chin Tsai , Washington State University , Pullman , WA
Marizela Silva , Washington State University , Pullman , WA
Juming Tang , Washington State University , Pullman , WA
Meijun Zhu , Washington State University , Pullman , WA
Introduction:  Listeria monocytogenes can survive in dry condition for a long period of time. Despite an increasing number of studies addressing Salmonella inactivation in low-moisture foods, there is a general lack of knowledge related to L. monocytogenes inactivation in low moisture foods during thermal processing and to the factors impacting their survival in low moisture food. Cocoa powder is an essential ingredient and widely incorporated in different disserts and drink and thus a possible source of L. monocytogenes contamination.

Purpose:  To evaluate the thermal resistance of L. monocytogenes in cocoa powder and further investigate the impact of water activity (aw) on its survival in cocoa powder.

Methods:  Natural unsweetened cocoa powder (Hershey’s) was inoculated with three-strain L. monocytogenes cocktail (~9.0 log CFU/g), equilibrated to water activity (aw, 25°C) to 0.3 or 0.45, then subjected to isothermal treatments using aluminum TDT test cell containing 0.4 g of inoculated and equilibrated sample. The survivors were enumerated on TSAYE plates.

Results:  Inactivation data resulted from different temperatures at both aw showed log-linear trend which was used to obtained thermal inactivation parameters. Thermal resistance of L. monocytogenes at 0.3 aw was significantly higher than that at 0.45 aw across all three temperatures. Listeria monocytogenes at 0.3 aw and 0.45 aw had D70°C of 7.44±1.17 and 4.77±0.28 min, D75°C of 3.62±0.03 and 2.84±0.09 min, and D80°C of 1.35±0.04 and 1.06±0.05 min, respectively, z-value at 0.3 aw and 0.45 aw was 13.48 and 15.31°C, respectively.

Significance:  Listeria monocytogenes demonstrated much higher thermal resistance in cocoa powder compared to the high moisture foods, which is impacted by aw. Data provide valuable information for industry to validate thermal processing for control of L. monocytogenes in low moisture foods.